
Common File User’s Guide∗

The NPARC Alliance

NASA Glenn Research Center

Cleveland, Ohio

USAF Arnold Engineering Development Center

Tullahoma, Tennessee

∗This is an unnumbered version of this document, created August 2, 2002. It is essentially identical to the Common
File Programmer’s Guide by the Boeing Corporation. Please send corrections, additions, ideas, etc., to Mark Fisher
at mark.s.fisher@boeing.com or Charlie Towne at towne@grc.nasa.gov.





Contents

1 General Overview 1

2 Common File Versions 3
2.1 Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Basic Concepts 5
3.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Node Header Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Reference and Scaling Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Subroutine Descriptions 7
4.1 Initialization Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CFINIT — Initialize the Common File Library . . . . . . . . . . . . . . . . . . . . . . 8
4.2 File Oriented Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CFSTFP — Set a File Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CFGTFP — Get a File Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CFRECL — Set Record Length to be Used Before Calling CFOPEN . . . . . . . . . . . 11
CFOPEN — Open a Common File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
CFCLOS — Close a Common File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Node Oriented Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
CFCNOD — Create a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
CFNDEL — Delete a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
CFNMOV — Move a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CFNREN — Rename a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
CFSNOD — Establish Access to a Node . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CFRNOD — Read Node Header Information . . . . . . . . . . . . . . . . . . . . . . . . 19
CFWNOD — Write Node Header Information . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Data Read and Write Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
CFRVI — Read Integer Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
CFRVR — Read Real Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CFRVD — Read Double Precision Variable . . . . . . . . . . . . . . . . . . . . . . . . 23
CFRVRX — Read Real Variable with Conversion . . . . . . . . . . . . . . . . . . . . . 24
CFRVDX — Read Double Precision Variable with Conversion . . . . . . . . . . . . . . 25
CFRVC — Read Character Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
CFWVI — Write Integer Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CFWVR — Write Real Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CFWVD — Write Double Precision Variable . . . . . . . . . . . . . . . . . . . . . . . . 29
CFWVC — Write Character Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CFVDEL — Delete a Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CFERMS — Retrieve Error Message Text for Specified Error Number . . . . . . . . . 32
CFRREF — Read Reference and Scaling Data . . . . . . . . . . . . . . . . . . . . . . . 33
CFWREF — Write Reference and Scaling Data . . . . . . . . . . . . . . . . . . . . . . 34
CFVINF — Get Information About a Variable . . . . . . . . . . . . . . . . . . . . . . 35
CFVLST — Get List of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
CFNLST — Get List of Subnodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



Common File User’s Guide

CFSLST — Get List of Reference and Scaling Data . . . . . . . . . . . . . . . . . . . 38
CFUNIT — Common File Get Current/New UNITs . . . . . . . . . . . . . . . . . . . 39
CFOREC — Common File Optimal RECord length calculation . . . . . . . . . . . . . 42
CFVSIZ — Common File Variable SIZe information . . . . . . . . . . . . . . . . . . . 43
CFHOST — Common File get HOST type . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Status Codes 45

6 Default Library Values and Limits 47

7 Definitions for CFD Applications 49
7.1 Node Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.1 Zone Node Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.1.2 Boundary Node Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.1.3 Interior Node Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Node Header Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2.1 Root Node Common Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2.2 WIND Root Node Application Specific Data . . . . . . . . . . . . . . . . . . 51
7.2.3 Zone Node Header Common Definitions . . . . . . . . . . . . . . . . . . . . . 51
7.2.4 WIND Zonal Node Application Specific Data . . . . . . . . . . . . . . . . . . 54
7.2.5 Boundary Node Application Specific Data . . . . . . . . . . . . . . . . . . . . 54

7.3 Variable Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.2 General Flow Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.3 Turbulence Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.4 Chemistry Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.5 Miscellaneous Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.6 WIND Application Specific Variables . . . . . . . . . . . . . . . . . . . . . . . 57

Appendix A. Conversion Factors 61

Appendix B. Transferring Common Files Between Computer Systems 65

Appendix C. CFCRAY — Convert Version 1 or 2 Files to and from Cray Format 67
C.1 Converting Version 1 or 2 Files to Cray Format . . . . . . . . . . . . . . . . . . . . . 67
C.2 Converting Version 1 or 2 files from Cray Format . . . . . . . . . . . . . . . . . . . . 67
C.3 Embedding CFCRAY in Application Scripts . . . . . . . . . . . . . . . . . . . . . . . . 67

Appendix D. Using Common Files Directly in PLOT3D 69
D.1 Reading a Grid File Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
D.2 Reading Separate Grid and Flow Files . . . . . . . . . . . . . . . . . . . . . . . . . . 69
D.3 Reading a Combined Grid and Flow File . . . . . . . . . . . . . . . . . . . . . . . . . 69
D.4 Reading Using the /APPEND and /ZONES Qualifiers . . . . . . . . . . . . . . . . . . . 69
D.5 Dimensionalization Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
D.6 Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iv



1 General Overview

The common file library is a set of routines that provide access to a file structure hereafter called
the common file. The common file structure is a third generation attempt to provide a unifying
file structure for storing CFD data. It provides a flexible and extendable mechanism for storing
CFD and other data as well. The purpose of the common file library is to insulate the applications
programmer from the nuances of dealing with the myriad of different computer types that make up
a computing system. By using the library the application programmer can process a common file
from another machine without having to perform explicit conversions.

1





2 Common File Versions

The common file has evolved over the years to meet the changing needs by applications such as
CFD. The current version is version 3. The following summarizes the changes to the common file
for the each new version.

2.1 Version 1

Initial release of the common file with the built in limits shown in Section 6, “Default Library
Values and Limits,” on p. 47.

2.2 Version 2

The second release increased the limits on the number of nodes and the number of variables. This
caused a minor change in how some of the internal pointers were stored. For files created with limits
within version 1 there was no change in structure. Thus they could be read by version 1 libraries.

2.3 Version 3

Version 3 represents a major change in the file structure based on the CGNS (CFD General
Notation System) data structure. The CGNS project was sponsored by NASA for Boeing to develop
the next generation common file structure. The new structure removes the current common file
limits, adds support for more data types and includes both a C and Fortran interface. The result
is the ADF (Advanced Database Format) library which is written in C and supersedes the Boeing
common file library. In order to maintain compatibility with old common files and provide support
for the new format the ADF core has been layered under the common file interface creating version
3. Several new functions have been added as well as many limits being removed with no changes to
the user interface for existing functions. Note that version 3 files cannot be read with version 1 or
2 libraries.

3

http://www.CGNS.org/
http://www.CGNS.org/




3 Basic Concepts

The file structure is based on a tree topology with the root node at the top and user created
subnodes underneath. The node itself contains integer, real, and character data as well as pointers
to other nodes and variables. A variable is an array of data of a given type and length. A more
detailed description is given below.

3.1 Nodes

A node represents a collection of related information. Associated with a given node are node
header information, variables and subnodes. The top node in the file is called the root node and is
created automatically when the file is created. All other nodes must be explicitly created.

All nodes except the root node must be given a name by the creating application. Names may
be up to 8 characters long for versions 1 and 2 and up to 32 characters long for version 3. Names
may contain any character, however the use of non-displayable characters may prevent portability.
Upper case and lower case characters are considered different (i.e., Zone 1 is not equal to ZONE 1).
Examples of names are ZONE 1 and BNDRY 1.

By default, a node may have up to 64 subnodes and 64 variables to which it directly associates.
Subnodes of subnodes or variables of subnodes do not count toward this limit. The maximum
number of subnodes and variables can be increased at the time the file is created subject to a library
imposed maximum. For version 3 files there is no node limit. The limit now represents only your
desired program limit and can be changed at any time.

3.2 Node Header Information

Each node has associated with it node header information. The node header information is
provided for the application to store a small amount of information about the node. The contents
of the node header are application dependent and data within the node header can be reliably used
by different applications only if they agree on its organization.

By default, up to 64 integer values, 64 single precision floating point values, and two 80 character
strings can be stored in a node header. The number of each value can be increased at file creation
time subject to a maximum imposed by the library.

3.3 Variables

Variables contain the data to be written or read by the application.

A variable may be of type INTEGER, REAL, or DOUBLE PRECISION and is associated with
a specific node. For version 3 files a new CHARACTER variable has been added. A variable is
known only within the node with which it is associated, i.e., variable X associated with node A has
no relation to variable X in node B. It can be of a different type or length.

Like nodes, variables have names and are subject to the same restrictions. Examples of names
are x, rho*u and T.

5



Common File User’s Guide

3.4 Reference and Scaling Data

Reference and scaling data is maintained to provide a mechanism for applications to interchange
data even if they use different sets of units for dimensional data. Reference and scaling data is
attached to a specific variable name. At the current time, reference and scaling data is applied on a
file-wide basis (i.e., like-named variables under different nodes will use the same reference and scaling
data). At some point in the future reference and scaling data will be applicable on a node-by-node
basis. For details on using the reference and scaling data see the description of CFUNIT on p. 39.

6



4 Subroutine Descriptions

This section describes in detail the subroutine calls that define the common file library. All of
the subroutine calls (with the exception of CFERMS and CFINIT) have the following format using the
Fortran interface:

CALL CFxxxx (STATUS, STATE, ...)

where STATUS is an integer value returned by the routine to indicate success or failure of the request
and STATE is an integer variable corresponding to the file state to which the request is to be applied.
A file state represents a particular file and node to which a common file request is applied. The
application must initialize the STATE variable to zero before the first call to CFSTFP or CFRECL for a
specific file. Thereafter the library routines maintain the STATE variable. Note that the application
must not modify the STATE variable.

By default, all of the common file routines abort the program if an error is detected except
CFINIT, CFERMS, and CFVINF. The program may prevent this action by calling CFSTFP to set the
ABORT flag to zero. This will cause the library routines to return a non-zero status value if an error
is detected.

The common file library now supports a C interface. The type definitions and defines for the
C interface are in the cfbind c 2 f.h include file. The C routine names are the same as the Fortran
routine names with the leading “CF” replaced by “CF_C”.

The following sections show the calling statement for each subroutine, with the Fortran version
listed first, followed by the C version in italics. The arguments are then defined, and classified as
Input, Output, or Temporary. In a few cases, an argument has two definitions, one for input and
another for output. The argument names include the data type (i.e., integer, character, etc.), and
again the Fortran name is listed first, followed by the C name in italics.

7



Common File User’s Guide

4.1 Initialization Functions

CFINIT — Initialize the Common File Library

CALL CFINIT ()
void CF_Cinit ()

CFINIT initializes various internal tables used by the common file library routines. It must be
called at least once in a program and must be called before any other common file library routine.
Multiple calls to this subroutine will have no effect on the common file tables or operation.

8



4 Subroutine Descriptions

4.2 File Oriented Functions

CFSTFP — Set a File Parameter

CALL CFSTFP (STATUS, STATE, PARNAM, PARVAL)
Fint CF_Cstfp (status, state, parnam, parval)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The root state of the file or the state variable initialized to
zero if no previous calls to CFSTFP, CFGTFP, or CFRECL have
been made to this file.

Output The root state if STATE was zero.

CHARACTER*(*) PARNAM
Fchar *parnam

Input The name of the parameter to be set.

INTEGER PARVAL
Fint parval

Input The value to be assigned to the parameter specified in PAR-
NAM.

CFSTFP is used to set the file parameters for use by a subsequent CFOPEN request. The following
parameters can be set:

UNIT No default, must be set except for version 3
CIO Use C I/O interface, limited support, not used for version 3
ABORT 1 (abort if error occurs)
FILE_CPU File CPU type
FILE_OS File operating system type
RECORD_LENGTH Depends on host CPU and operating system
MAX_NODES Maximum number of nodes per subnode
MAX_VARIABLES Maximum number of variables per node
MAX_INTEGERS Number of INTEGER elements in a node header
MAX_REALS Number of REAL elements in a node header
MAX_CHARACTERS Number of CHARACTER*80 elements in a node header
FILE_VERSION Version of the file to create must equal 2 or 3 (default)

The values of the parameters RECORD_LENGTH, MAX_NODES, MAX_VARIABLES, MAX_INTEGERS,
MAX_REALS, and MAX_CHARACTERS must be a multiple of two to allow for portability between ma-
chines and are subject to limitations described in Section 6, “Default Library Values and Limits,”
on p. 47. For version 3 files the unit number is not used since the open is done in C.

If a file is opened and a specific parameter has not been set by CFSTFP then a default value will
be assigned for the parameter. The default values are also defined in Section 6.

Only the ABORT, FILE_CPU, and FILE_OS parameters may be set after the file is opened. For
version 3 files the MAX_NODES and MAX_VARIABLES parameters may be changed after open to redefine
the maximum that is allowed to be created in the file.

9



Common File User’s Guide

CFGTFP — Get a File Parameter

CALL CFGTFP (STATUS, STATE, PARNAM, PARVAL)
Fint CF_Cgtfp (status, state, parnam, parval)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The root state of the file or the state variable initialized to
zero if no previous calls to CFSTFP, CFGTFP or CFRECL have
been made to this file.

Output The root state if STATE was zero.

CHARACTER*(*) PARNAM
Fchar *parnam

Input Name of the parameter whose value is to be returned.

INTEGER PARVAL
Fint *parval

Output Value of the requested parameter.

CFGTFP retrieves the value of a file parameter. If called prior to opening a file then the value
returned will be either the default value for the parameter or the value set by CFSTFP. If called after
the file is opened then the value will be that contained in the file header.

The parameter name may be any one of the following names:

UNIT
OPEN
HOST_CPU
HOST_OS
ABORT
FILE_CPU
FILE_OS
RECORD_LENGTH
MAX_NODES
MAX_VARIABLES
MAX_INTEGERS
MAX_REALS
MAX_CHARACTERS
LAST_RECORD
VERSION

Note that FILE_CPU, FILE_OS and LAST_RECORD are not known until the file is opened.

10



4 Subroutine Descriptions

CFRECL — Set Record Length to be Used Before Calling CFOPEN

CALL CFRECL (STATUS, STATE, MAXPTS, PRECSN)
Fint CF_Crecl (status, state, maxpts, precsn)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The root state of the file or the state variable initialized to zero if
no previous calls to CFSTFP, CFGTFP or CFRECL have been made to
this file.

Output The root state if STATE was zero.

INTEGER MAXPTS
Fint maxpts

Input Maximum variable size.

INTEGER PRECSN
Fint precsn

Input Precision of the proposed record.
1 = Real or Integer.
2 = Double precision.

CFRECL sets the record length to be used when creating a common file with a subsequent CFOPEN
request. The routine uses MAXPTS and PRECSN to calculate a record length acceptable to the operating
system. This works fine for simple one size variable files but not very well for files containing variables
of many different sizes. Thus the CFOREC routine (see p. 42) should be used to calculate record lengths
for an arbitrary sized file. For version 3 files there is no record length although the record length
parameter stored in the file is still used to determine the size of the conversion buffers used in the
CFRVxx subroutines.

For example, assume you are going to be writing single precision records dimensioned IDIM ×
JDIM × KDIM. The following call will set the record length:

RSTATE = 0
CALL CFRECL (STATUS, RSTATE, IDIM*JDIM*KDIM, 1)

11



Common File User’s Guide

CFOPEN — Open a Common File

CALL CFOPEN (STATUS, STATE, FILNAM, MODE)
Fint CF_Copen (status, state, filnam, mode)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The state from a previous CFSTFP or CFRECL call for the file.

Output The state for the root node of the file.

CHARACTER*(*) FILNAM
Fchar *filnam

Input The name of the file to be opened. Any extension must
be included (.cgd, .cfl, etc.). FILNAM is ignored if MODE is
specified as SCRATCH. If FILNAM is all blanks, a file name of
FOR0uu (where uu is the unit number set by CFSTFP) will
be used.

CHARACTER*(*) MODE
Fchar *mode

Input How the file is to be opened. MODE must be OLD, NEW, or
SCRATCH.

CFOPEN allocates internal tables for the common file library and opens the file for processing.

A CFOPEN call must be preceded, at minimum, by a call to CFSTFP to set the unit number. For
version 3 files the unit number is not used, thus the CFSTFP call is unnecessary in the following
example of a minimal opening sequence for a common file:

INTEGER STATE, STATUS
STATE = 0
CALL CFINIT ()
CALL CFSTFP (STATUS, STATE, ’UNIT’, 11)
CALL CFOPEN (STATUS, STATE, ’TEST.CGD’, ’NEW’)

When CFOPEN is called with a mode of NEW or SCRATCH, the attributes of the file are set from
either default values or from the values set by calls to CFSTFP. The default values are listed in
Section 6, “Default Library Values and Limits,” on p. 47.

When CFOPEN is called with a mode of OLD, the default values or the values specified by CFSTFP
are used to verify that the calling program can accomodate the file being opened and are subsequently
overwritten by the actual values from the file. Thus if the program let everything default and tried
to open a file with MAX_INTEGERS set to 128, the request to open the file would be rejected.

The only routines that can be called prior to CFOPEN for a given file are CFSTFP, CFRECL, CFOREC,
CFUNIT, and CFERMS.

12



4 Subroutine Descriptions

CFCLOS — Close a Common File

CALL CFCLOS (STATUS, STATE)
Fint CF_Cclos (status, state)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The root state (from CFOPEN) of the file to be closed.

Output Zero.

CFCLOS closes a common file. Any internal table space within the common file library is released
and made available for use for other files.

13



Common File User’s Guide

4.3 Node Oriented Functions

CFCNOD — Create a Node

CALL CFCNOD (STATUS, STATE, NODNAM, NSTATE)
Fint CF_Ccnod (status, state, nodnam, nstate)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The state of the node that will be the parent node of the
subnode that is being created.

CHARACTER*(*) NODNAM
Fchar *nodnam

Input Name of the subnode to be created. It will be truncated
or padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

INTEGER NSTATE
Fint *nstate

Output The state of the newly created subnode.

CFCNOD is used to create a subnode under another node. The following code fragment creates a
subnode under the root node using the name stored in ZNAME (RSTATE is the root state returned by
CFOPEN):

CHARACTER*32 ZNAME
INTEGER ZONE,ZSTATE,RSTATE
ZNAME = subnode_name

CALL CFCNOD (STATUS, RSTATE, ZNAME, ZSTATE)

Once the request has been successfully completed, the program may read and write the node
header information and variables of the subnode by using the the new state (ZSTATE) as the state
for subsequent calls to CFR/WNOD and CFR/WVx NOD.

The integer and real elements in the node header will be initialized to zero and the character
elements will be initialized to blank.

14



4 Subroutine Descriptions

CFNDEL — Delete a Node

CALL CFNDEL (STATUS, STATE, NODNAM)
Fint CF_Cndel (status, state, nodnam)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The state of the node that is the parent node of the subnode
that is being deleted.

CHARACTER*(*) NODNAM
Fchar *nodnam

Input Name of the subnode to be deleted. It will be truncated
or padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

CFNDEL is used to delete a subnode under another node. The following code fragment deletes a
subnode under the root node using the name stored in ZNAME (RSTATE is the root state returned by
CFOPEN):

CHARACTER*32 ZNAME
INTEGER ZONE,RSTATE
ZNAME = subnode_name

CALL CFNDEL (STATUS, RSTATE, ZNAME)

Once the request has been successfully completed, all data for the node and all subnodes under
that node will be inaccessible. For version 1 and 2 files the data is not removed and the space
becomes dead space in the file. For version 3 files the ADF core puts the space into a free chunk
table to be reallocated to a new node or variable. The actual size of the file does not change.

15



Common File User’s Guide

CFNMOV — Move a Node

CALL CFNMOV (STATUS, STATE, NODNAM, TSTATE)
Fint CF_Cndel (status, state, nodnam, tstate)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The state of the node that is the parent node of the subnode
that is being moved.

CHARACTER*(*) NODNAM
Fchar *nodnam

Input Name of the subnode to be moved. It will be truncated
or padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

INTEGER TSTATE
Fint *tstate

Input The state of the new parent node for NODNAM.

CFNMOV is used to move a subnode from one node to another in the same file. All subnodes of the
moved node move with it. No data in the file is actually moved; only the node pointers are moved.

16



4 Subroutine Descriptions

CFNREN — Rename a Node

CALL CFNREN (STATUS, STATE, NODNAM, NEWNAM)
Fint CF_Cnren (status, state, nodnam, newnam)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The state of the node that is the parent node of the subnode
that is being renamed.

CHARACTER*(*) NODNAM
Fchar *nodnam

Input Name of the subnode to be renamed. It will be truncated
or padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

CHARACTER*(*) NEWNAM
Fchar *newnam

Input The new name of the node. It will be truncated or padded
with blanks to 8 (for versions 1 and 2) or 32 (for version 3)
characters as required. The name is case-sensitive (i.e., x is
not equal to X).

CFNREN is used to rename a subnode of a node. The new name must be unique under the parent
node.

17



Common File User’s Guide

CFSNOD — Establish Access to a Node

CALL CFSNOD (STATUS, STATE, NODNAM, NSTATE)
Fint CF_Csnod (status, state, nodnam, nstate)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input State of the node containing the specified subnode.

CHARACTER*(*) NODNAM
Fchar *nodnam

Input Name of the subnode to be accessed. It will be truncated
or padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

INTEGER NSTATE
Fint *nstate

Output The node state of the requested subnode.

CFSNOD is used access a subnode under another node. The following code fragment accesses a
subnode under the root node using the name stored in ZNAME (RSTATE is the root state returned by
CFOPEN):

CHARACTER*32 ZNAME
INTEGER ZONE,ZSTATE,RSTATE
ZNAME = subnode_name

CALL CFSNOD (STATUS, RSTATE, ZNAME, ZSTATE)

Once the request has been successfully completed, the program may read and write the node
header information and variables of the subnode by using the the new state (ZSTATE) as the state
for subsequent calls to CFR/WNOD and CFR/WVx NOD.

18



4 Subroutine Descriptions

CFRNOD — Read Node Header Information

CALL CFRNOD (STATUS, STATE, IPAR, FPAR, CPAR)
Fint CF_Crnod (status, state, ipar, fpar, cpar)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node whose header information is to be
read.

INTEGER IPAR(*)
Fint *ipar

Output The integer elements from the node header. The size of the
array must be at least MAX_INTEGERS long (default 64, see
CFSTFP).

REAL FPAR(*)
Freal *fpar

Output The real elements from the node header. The size of the
array must be at least MAX_REALS long (default 64, see CF-
STFP).

CHARACTER*80 CPAR(*)
Fchar **cpar

Output The character elements from the node header. The size of
the array must be at least MAX_CHARACTERS long (default 2,
see CFSTFP).

CFRNOD reads the application dependent node header information for the specified node.

19



Common File User’s Guide

CFWNOD — Write Node Header Information

CALL CFWNOD (STATUS, STATE, IPAR, FPAR, CPAR)
Fint CF_Cwnod (status, state, ipar, fpar, cpar)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node whose header information is to be
written.

INTEGER IPAR(*)
Fint *ipar

Input The integer elements from the node header. The size of the
array must be at least MAX_INTEGERS long (default 64, see
CFSTFP).

REAL FPAR(*)
Freal *fpar

Input The real elements from the node header. The size of the
array must be at least MAX_REALS long (default 64, see CF-
STFP).

CHARACTER*80 CPAR(*)
Fchar **cpar

Input The character elements from the node header. The size of
the array must be at least MAX_CHARACTERS long (default 2,
see CFSTFP).

CFWNOD writes the application dependent node header information for the specified node.

20



4 Subroutine Descriptions

4.4 Data Read and Write Functions

CFRVI — Read Integer Variable

CALL CFRVI (STATUS, STATE, VARNAM, VARLEN, INCR, VARDAT)
Fint CF_Crvi (status, state, varnam, varlen, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node which contains the requested vari-
able.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be read. It will be truncated or
padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

INTEGER VARLEN
Fint *varlen

Output Number of elements read.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when moving
data to the output array.

INTEGER VARDAT(*)
Fint *vardat

Output The data read from the file.

CFRVI reads an integer variable located under the specified node.

21



Common File User’s Guide

CFRVR — Read Real Variable

CALL CFRVR (STATUS, STATE, VARNAM, VARLEN, INCR, VARDAT)
Fint CF_Crvr (status, state, varnam, varlen, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node which contains the requested vari-
able.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be read. It will be truncated or
padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

INTEGER VARLEN
Fint *varlen

Output Number of elements read.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when moving
data to the output array.

REAL VARDAT(*)
Freal *vardat

Output The data read from the file.

CFRVR reads a real variable located under the specified node.

22



4 Subroutine Descriptions

CFRVD — Read Double Precision Variable

CALL CFRVD (STATUS, STATE, VARNAM, VARLEN, INCR, VARDAT)
Fint CF_Crvd (status, state, varnam, varlen, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node which contains the requested
variable.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be read. It will be truncated
or padded with blanks to 8 (for versions 1 and 2) or
32 (for version 3) characters as required. The name
is case-sensitive (i.e., x is not equal to X).

INTEGER VARLEN
Fint *varlen

Output Number of elements read.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when
moving data to the output array.

DOUBLE PRECISION VARDAT(*)
Fdouble *vardat

Output The data read from the file.

CFRVD reads a double precision precision variable located under the specified node.

23



Common File User’s Guide

CFRVRX — Read Real Variable with Conversion

CALL CFRVRX (STATUS, STATE, VARNAM, VARLEN, INCR, VARDAT, TMPBUF)
Fint CF_Crvrx (status, state, varnam, varlen, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node containing the requested
variable.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be read. It will be trun-
cated or padded with blanks to 8 (for versions
1 and 2) or 32 (for version 3) characters as re-
quired. The name is case-sensitive (i.e., x is not
equal to X).

INTEGER VARLEN
Fint *varlen

Output Number of elements read.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when
moving data to the output array.

REAL VARDAT(*)
Freal *vardat

Output The data read from the file.

DOUBLE PRECISION TMPBUF(*) Temporary A temporary buffer capable of containing a
record length of real numbers. The record length
can be obtained from CFGTFP.

CFRVRX reads either a real or double precision value located under the specified node into a single
precision array. If the requested variable is a single precision variable then the call is equivalent to
a call to CFRVR. If the requested variable is double precision then the data is read in and converted
to single precision in the output array.

24



4 Subroutine Descriptions

CFRVDX — Read Double Precision Variable with Conversion

CALL CFRVDX (STATUS, STATE, VARNAM, VARLEN, INCR, VARDAT, TMPBUF)
Fint CF_Crvdx (status, state, varnam, varlen, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node containing the requested
variable.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be read. It will be trun-
cated or padded with blanks to 8 (for versions
1 and 2) or 32 (for version 3) characters as re-
quired. The name is case-sensitive (i.e., x is not
equal to X).

INTEGER VARLEN
Fint *varlen

Output Number of elements read.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when
moving data to the output array.

DOUBLE PRECISION VARDAT(*)
Fdouble *vardat

Output The data read from the file.

REAL TMPBUF(*) Temporary A temporary buffer capable of containing a
record length of real numbers. The record length
can be obtained from CFGTFP.

CFRVDX reads either a real or double precision value located under the specified node into a double
precision array. If the requested variable is a double precision variable then the call is equivalent to
a call to CFRVD. If the requested variable is single precision then the data is read in and converted
to double precision in the output array.

25



Common File User’s Guide

CFRVC — Read Character Variable

CALL CFRVC (STATUS, STATE, VARNAM, VARLEN, CHRSIZ, INCR, VARDAT)
Fint CF_Crvc (status, state, varnam, varlen, chrsiz, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node containing the requested variable.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be read. It will be truncated or
padded with blanks to 32 characters as required. The name
is case-sensitive (i.e., x is not equal to X).

INTEGER VARLEN
Fint *varlen

Output Number of elements read.

INTEGER CHRSIZ
Fint *chrsiz

Input The size of the character elements. CHRSIZ is used to in-
crement through the data elements for Fortran character
arrays.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when moving
data to the output array.

REAL VARDAT(*)
Freal *vardat

Output The data read from the file.

CFRVC reads a character variable located under the specified node. This function is only available
in version 3 or greater.

26



4 Subroutine Descriptions

CFWVI — Write Integer Variable

CALL CFWVI (STATUS, STATE, VARNAM, VARLEN, INCR, VARDAT)
Fint CF_Cwvi (status, state, varnam, varlen, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node containing the requested variable.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be written. It will be truncated
or padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

INTEGER VARLEN
Fint varlen

Input Number of elements to write.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when writing the
data to the file.

INTEGER VARDAT(*)
Fint *vardat

Input The data to be written.

CFWVI writes an integer variable under the specified node. The variable will be created if it does
not already exist. If the variable already exists, the new contents will replace the old contents. The
old length and the new length do not have to be equal.

27



Common File User’s Guide

CFWVR — Write Real Variable

CALL CFWVR (STATUS, STATE, VARNAM, VARLEN, INCR, VARDAT)
Fint CF_Cwvr (status, state, varnam, varlen, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node containing the requested variable.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be written. It will be truncated
or padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

INTEGER VARLEN
Fint varlen

Input Number of elements to write.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when writing the
data to the file.

REAL VARDAT(*)
Freal *vardat

Input The data to be written.

CFWVR writes a real variable under the specified node. The variable will be created if it does not
already exist. If the variable already exists, the new contents will replace the old contents. The old
length and new length do not have to be equal.

If the variable already exists and is double precision, the data will be written as double precision.
The input data will be unaffected.

28



4 Subroutine Descriptions

CFWVD — Write Double Precision Variable

CALL CFWVD (STATUS, STATE, VARNAM, VARLEN, INCR, VARDAT)
Fint CF_Cwvd (status, state, varnam, varlen, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node containing the requested vari-
able.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be written. It will be trun-
cated or padded with blanks to 8 (for versions 1 and
2) or 32 (for version 3) characters as required. The
name is case-sensitive (i.e., x is not equal to X).

INTEGER VARLEN
Fint varlen

Input Number of elements to write.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when writ-
ing the data to the file.

DOUBLE PRECISION VARDAT(*)
Fdouble *vardat

Input The data to be written.

CFWVD writes a double precision variable under the specified node. The variable will be created
if it does not already exist. If the variable already exists, the new contents will replace the old
contents. The old length and new length do not have to be equal.

If the variable exists and is single precision, the data will be written as single precision. The
input data will be unaffected.

29



Common File User’s Guide

CFWVC — Write Character Variable

CALL CFWVC (STATUS, STATE, VARNAM, VARLEN, CHRSIZ, INCR, VARDAT)
Fint CF_Cwvc (status, state, varnam, varlen, chrsiz, incr, vardat)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node containing the requested variable.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be written. It will be truncated
or padded with blanks to 32 characters as required. The
name is case-sensitive (i.e., x is not equal to X).

INTEGER VARLEN
Fint varlen

Output Number of elements of size CHRSIZ to write.

INTEGER CHRSIZ
Fint *chrsiz

Input The size of the character elements. The total length
written will be VARLEN*CHRSIZ. CHRSIZ is also used to
increment through the data elements for Fortran char-
acter arrays.

INTEGER INCR
Fint incr

Input Increment between elements to be applied when moving
data from the output array.

CHARACTER*(*) VARDAT(*)
Fchar *vardat

Output The data written to the file.

CFWVC writes a character variable located under the specified node. This function is only available
in version 3 or greater.

30



4 Subroutine Descriptions

CFVDEL — Delete a Variable

CALL CFVDEL (STATUS, STATE, VARNAM)
Fint CF_Cvdel (status, state, varnam)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The state of the node that contains the variable that is being
deleted.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to be deleted. It will be truncated
or padded with blanks to 8 (for versions 1 and 2) or 32 (for
version 3) characters as required. The name is case-sensitive
(i.e., x is not equal to X).

CFVDEL is used to delete a variable under a node. Once the request has been successfully com-
pleted, all data for the variable will be inaccessible. For version 1 and 2 files the data is not removed
and the space becomes dead space in the file. For version 3 files the ADF core puts the space into
a free chunk table to be reallocated to a new node or variable. The actual size of the file does not
change.

31



Common File User’s Guide

4.5 Miscellaneous Functions

CFERMS — Retrieve Error Message Text for Specified Error Number

CALL CFERMS (ERRNUM, ERRTXT)
Fint CF_Cerms (errnum, errtxt)

INTEGER ERRNUM
Fint errnum

Input Error number for which text is being requested.

CHARACTER*(*) ERRTXT
char *errtxt

Output Text for specified error number.

CFERMS returns a textual error message corresponding to an error number returned by a call
to a common file library routine. See Section 5, “Status Codes,” starting on p. 45 for the error
numbers and their associated text. For version 3 files the ADF core errors are returned as a negative
number to distinguish them from the common file error numbers. The ADF error message routine
is automatically called to return the proper error string.

32



4 Subroutine Descriptions

CFRREF — Read Reference and Scaling Data

CALL CFRREF (STATUS, STATE, VARNAM, UCOFST, UCSCAL, NDOFST, NDSCAL)
Fint CF_Crref (status, state, varnam, ucofst, ucscal, ndofst, ndscal)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The root state of the file.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to obtain reference data. It will be
truncated or padded with blanks to 8 (for versions 1 and 2)
or 32 (for version 3) characters as required. The name is
case-sensitive (i.e., x is not equal to X).

REAL UCOFST
Freal *ucofst

Output Unit conversion offset.

REAL UCSCAL
Freal *ucscal

Output Unit conversion scale factor.

REAL NDOFST
Freal *ndofst

Output Non-dimensionalization offset.

REAL NDSCAL
Freal *ndscal

Output Non-dimensionalization scale factor.

CFRREF reads the reference and scaling data for the specified variable. If no reference and scaling
data has been written for the specified variable then the following values are returned:

UCOFST = 0.0
UCSCAL = 1.0
NDOFST = 0.0
NDSCAL = 1.0

See CFWREF on p. 34 for a description of the function of the reference and scaling data.

33



Common File User’s Guide

CFWREF — Write Reference and Scaling Data

CALL CFWREF (STATUS, STATE, VARNAM, UCOFST, UCSCAL, NDOFST, NDSCAL)
Fint CF_Cwref (status, state, varnam, ucofst, ucscal, ndofst, ndscal)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The root state of the file.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to write reference data. It will be
truncated or padded with blanks to 8 (for versions 1 and 2)
or 32 (for version 3) characters as required. The name is
case-sensitive (i.e., x is not equal to X).

REAL UCOFST
Freal ucofst

Input Unit conversion offset.

REAL UCSCAL
Freal ucscal

Input Unit conversion scale factor.

REAL NDOFST
Freal ndofst

Input Non-dimensionalization offset.

REAL NDSCAL
Freal ndscal

Input Non-dimensionalization scale factor.

CFWREF writes the reference and scaling data for the specified variable.

The reference and scaling data provides the mechanism for different programs to use different
sets of units and still function together properly. The program that writes data provides two pairs
of numbers, one pair that specifies how the data is non-dimensionalized and the other pair specifies
how to convert the dimensional values to SI units. The program writes the data in non-dimensional
form and the reference and scaling data provides the information necessary to transform it into SI
units.

The application of the reference and scaling data is done as follows:

V(file) = non-dimensional value of the data.
V(dimensional) = dimensional value of data in some set of units

= V(file)*NDSCAL + NDOFST
V(SI units) = V(dimensional)*UCSCAL + UCOFST

For example, if an application uses temperature T and it is non-dimensionalized by T∞ where
T∞ is specified in degrees Rankine, then the following factors would be used:

NDOFST = 0.0
NDSCAL = T∞
UCOFST = 0.0
UCSCAL = 5.0/9.0

Note: To obtain conversion numbers, use the CFUNIT subroutine described on p. 39, or see Ap-
pendix A.

34



4 Subroutine Descriptions

CFVINF — Get Information About a Variable

CALL CFVINF (STATUS, STATE, VARNAM, VARTYP, VARLEN)
Fint CF_Cvinf (status, state, varnam, vartyp, varlen)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Node state of the node that contains the requested variable.

CHARACTER*(*) VARNAM
Fchar *varnam

Input Name of the variable to obtain information. It will be trun-
cated or padded with blanks to 8 (for versions 1 and 2)
or 32 (for version 3) characters as required. The name is
case-sensitive (i.e., x is not equal to X).

INTEGER VARTYP
Fint *vartyp

Output The types of the requested variable.
1 = Integer
2 = Real
3 = Double precision
4 = Character

INTEGER VARLEN
Fint *varlen

Output Number of elements in the specified variable.

CFVINF returns the type and length of the specified variable. Note that if the requested variable
is not present, CFVINF will not abort even if the ABORT flag is set. For character variables the length
returned will be the element length times the character size.

35



Common File User’s Guide

CFVLST — Get List of Variables

CALL CFVLST (STATUS, STATE, VARLST, VARTYP, NUMVAR)
Fint CF_Cvlst (status, state, varlst, vartyp, numvar)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The node state for the list of variables to be returned.

CHARACTER*(*) VARLST(*)
Fchar **varlst

Output The variables associated with the specified node.

INTEGER VARTYP(*)
Fint *vartyp

Output The types of the variables in VARLST.
1 = Integer
2 = Real
3 = Double precision
4 = Character

INTEGER NUMVAR
Fint *numvar

Input If equal to −1 then only return NUMVAR, otherwise return
lists also.

Output The number of variables returned.

CFVLST returns the list of variables associated with the specified node.

36



4 Subroutine Descriptions

CFNLST — Get List of Subnodes

CALL CFNLST (STATUS, STATE, NODLST, NUMNOD)
Fint CF_Cnlst (status, state, nodlst, numnod)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The node state for the subnode list to be returned.

CHARACTER*(*) NODLST
Fchar **nodlst

Output List of subnodes under the specified node.

INTEGER NUMNOD
Fint *numnod

Input If equal to −1 then only return NUMNOD, otherwise return
lists also.

Output The number of subnodes returned.

CFNLST returns a list of subnodes of the specified node.

37



Common File User’s Guide

CFSLST — Get List of Reference and Scaling Data

CALL CFSLST (STATUS, STATE, VARLST, NUMVAR)
Fint CF_Cslst (status, state, varlst, numvar)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The root state of the file.

CHARACTER*(*) VARLST
Fchar **varlst

Output List of variables that have reference and scaling data.

INTEGER NUMVAR
Fint *numvar

Input If equal to −1 then only return NUMVAR, otherwise return
lists also.

Output The number of variable names returned.

CFSLST returns a list of variables that have reference and scaling data.

38



4 Subroutine Descriptions

CFUNIT — Common File Get Current/New UNITs

CALL CFUNIT (STATUS, STATE, VARNAM, MODE, CUNITS, DUNITS, CNVOFF, CNVSCL)
Fint CF_Cunit (status, state, varnam, mode, cunits, dunits, cnvoff, cnvscl)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input The root state of the file.

CHARACTER*(*) VARNAM
Fchar *varnam

Input The name of the variable or unit quantity for which
unit/conversion data is derived.

CHARACTER*(*) MODE
Fchar *mode

Input CURRENT — get current units
NEW — get conversion factors from CUNITS to DUNITS.

CHARACTER*(*) CUNITS
Fchar *cunits

Input When mode is NEW it is the current(from) units. If blank and
VARNAM is a CFD variable it will be derived from reference
and scaling data.

Output When mode is CURRENT it contains the current system of
units the variable is determined to be in using the reference
and scaling data for the variable.

CHARACTER*(*) DUNITS
Fchar *dunits

Input When mode is NEW it is the desired units that you wish to
convert to.

Output When mode is CURRENT it contains the current units the vari-
able is determined to be in using the reference and scaling
data for the variable.

REAL CNVOFF
Freal *cnvoff

Output Current/new conversion offset.

REAL CNVSCL
Freal *cnvscl

Output Current/new conversion scale factor.

CFUNIT returns the current system of units and the units for any CFD variable when the mode
is CURRENT. When then mode is NEW, CFUNIT returns conversion data from CUNITS to DUNITS where
the input CUNITS and DUNITS can be a system of units or the actual units. If actual units are used
they must conform to the format used in Appendix A, “Conversion Factors.” Valid systems of units
are MKS = SI = METRIC, CGS, ENGLISH = BRITISH = FSS (Foot-Slug-Second), and FPP (Foot-Pound-
Second). VARNAM may be any CFD variable name or a unit type. Valid unit types are LENGTH, MASS,
TIME, FORCE, DENSITY, TEMPERATURE, ENERGY, ENTROPY, VELOCITY, PRESSURE, GAS CONSTANT and
VISCOSITY. If VARNAM is a CFD variable and either CUNITS is blank or mode is CURRENT then the
current units will be derived from the reference and scaling data. If no reference and scaling data
have been stored for the variable the default will be the MKS system. For readability the following
aliases have been set up for use in the CUNITS and DUNITS variables.

m = meter = meters
cm = centimeter = centimeters
mm = millimeter = millimeters
ft = feet
in = inch = inches
kg = kilogram = kilograms

39



Common File User’s Guide

g = gram = grams
slug = slugs
lbf = lb = pounds
K = KELVIN
C = CENTIGRADE = CELSIUS
R = RANKINE
F = FAHRENHEIT
J = N-m
erg = dyn-cm

Note: These aliases can not be combined.

For consistency this subroutine should be used in all CFD applications. The following examples
illustrate the use of this subroutine.

Example 1

When the variable is old and is being read into an application, the application wants the variable
to be in certain units. The following reads the variable ’x’ and places it in the units of inches. This
example uses the fact that MSCALE and MOFF factors are stored to convert ’x’ to the MKS system
of units.

CALL CFRVR (STATUS, STATE, ’x’, VARLEN, 1, X)
CALL CFRREF (STATUS, STATE, ’x’, MOFF, MSCALE, DOFF, DSCALE)
CALL CFUNIT (STATUS, STATE, ’x’, ’NEW’, ’MKS’, ’in’, CNVOFF, CNVSCL)
DO 100 I = 1,VARLEN

X(I) = ((X(I)*DSCALE + DOFF)*MSCLE + MOFF)*CNVSCL + CNVOFF
100 CONTINUE

Note: If the data is modified and is to be stored back into the file then the inverse conversion must
be performed.

Example 2

When the variable is old and is being read into an application the units that the variable is
stored in may need to be known (e.g. for display). The following writes the variable ’p’ to a file
and includes the units as part of the output.

CALL CFRVR (STATUS, STATE, ’p’, VARLEN, 1, P)
CALL CFRREF (STATUS, STATE, ’p’, MOFF, MSCALE, DOFF, DSCALE)
CALL CFUNIT (STATUS, STATE, ’p’, ’CURRENT’, CUNITS, DUNITS, CNVOFF, CNVSCL)
CALL UTSLEN (DUNITS, LEN)
WRITE (6, 210) ’I’, ’J’, ’K’, ’PRESSURE’
DO 100 K = 1,KMAX

DO 110 J = 1,JMAX
DO 120 I = 1,IMAX

P(I,J,K) = P(I,J,K)*DSCALE + DOFF
WRITE (6,200) I, J , K, P(I,J,K), DUNITS(1:LEN)

120 CONTINUE
110 CONTINUE
100 CONTINUE
200 FORMAT (3I5, F12.5, A)
210 FORMAT (A, 5X, A, 5X, A, 7X, A)

40



4 Subroutine Descriptions

Example 3

When the variable is first being stored, four factors must be saved for the variable using the
subroutine CFWREF. The dimensional factors and units are known, CFUNIT is used to get the factors
to convert those units to the MKS system of units. In the following the pressure is known to be in
the ’FSS’ system of units.

CALL CFUNIT (STATUS, STATE, ’p’, ’NEW’, ’FSS’, ’MKS’, MOFF, MSCALE)
CALL CFWREF (STATUS, STATE, ’p’, MOFF, MSCALE, DOFF, DSCALE)
CALL CFWVR (STATUS, STATE, ’p’, VARLEN, 1, P)

41



Common File User’s Guide

CFOREC — Common File Optimal RECord length calculation

CALL CFOREC (STATUS, STATE, DIMLST, NUMDIM, TYPE, PRECIS, RECLEN)
Fint CF_Corec (status, state, dimlst, numdim, type, precis, reclen)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Global state of common file to search with FULL type.

INTEGER DIMLST(4,NUMDIM)
Fint *dimlst

Input List of zone dimensions and number of fringe points.

INTEGER NUMDIM
Fint *numdim

Input Number of dimensions in DIMLST.

CHARACTER*(*) TYPE
Fchar *type

Input Type of common file to compute record length (CGD,
CFL, CGF, ZDF, FULL). For FULL, all variables in the
CF file STATE are used and DIMLST is not used.

INTEGER PRECIS
Fint precis

Input Precision of the output variables (1=single, 2=double).

INTEGER RECLEN
Fint *reclen

Output Optimal record length.

CFOREC calculates the optimal record length for a common file. There are five modes ’FULL’,
’CGD’, ’CFL’, ’CGF’, or ’ZDF’. Mode ’FULL’ works on existing common files and uses the actual variable
sizes stored in the file to calulate the optimal record length. The other modes make a guess at the
optimal record length based on the zone dimensions input. The ’CGD’ mode is similar to the ’CFL’
mode except that it takes into account the variable sizes of boundary conditions. If you are not
storing boundary conditions then the ’CFL’ mode should be used. For version 3 files there is no
record length although the record length parameter stored in the file is still used to determine the
size of the conversion buffers used in the CFRVxx subroutines.

42



4 Subroutine Descriptions

CFVSIZ — Common File Variable SIZe information

CALL CFVSIZ (STATUS, STATE, MAXI, MAXR, MAXD)
Fint CF_Cvsiz (status, state, maxi, maxr, maxd)

INTEGER STATUS
Fint *status

Output Return status; for C it is also the function return.

INTEGER STATE
Fint *state

Input Global state of common file to search.

INTEGER MAXI
Fint *maxi

Output The size of the largest integer variable in the file.

INTEGER MAXR
Fint *maxr

Output The size of the largest real variable in the file.

INTEGER MAXD
Fint *maxd

Output The size of the largest double precision variable in the file.

CFVSIZ searches the entire file and locates the largest variable of the given type. This is useful
for check and/or allocating memory for reading file variables.

43



Common File User’s Guide

CFHOST — Common File get HOST type

CALL CFHOST (CPU, OS)
void CF_Chost (cpu, os)

INTEGER CPU
Fint *cpu

Output Output cpu binary type, where:
0 = Unknown
1 = Cray (1, 2, X-MP, Y-MP, C90)
2 = AX, F FLOATING and D FLOATING (non-AXP native)
3 = IBM (360/370)
4 = CONVEX (C1, C2 native mode)
5 = IEEE big endian (IRIS 2000/3000/4D)
6 = IEEE little endian
7 = VAX, F FLOATING and G FLOATING (AXP native)
8 = Unused
9 = Unused

INTEGER OS
Fint *os

Output Output operating system type, where:
0 = Unknown
1 = Cray Unix
2 = Vax VMS
3 = ALPHA Unix
4 = SUN Unix
5 = RS6K Unix
6 = CONVEX Unix
7 = SGI Unix
8 = HP Unix
9 = PARAGON Unix

44



5 Status Codes

All of the common file library routines return a status code through the first argument to indicate
whether the routine failed or succeeded. Below is a list of all of the status codes.

Table 1: Status Codes

Code Meaning

<0 ADF core error message (see ADF document for details).
0 Successful completion (no errors encountered).

100 File header validation error.
101 Node header validation error.
102 File header indicates IMPORT did not complete. Rerun IMPORT.
200 File was never opened.
201 File was never closed.
202 Invalid mode supplied to CFOPEN (must be OLD, NEW, or SCRATCH).
300 Requested variable does not exist.
301 Invalid variable name (cannot be blank).
302 Unable to allocate a new variable (out of variable space).
303 Variable is not of the proper type.
304 Invalid record length.
305 Invalid record number.
306 Invalid operation for C I/O.
400 Requested node does not exist.
401 Invalid node name (cannot be blank).
402 Unable to allocate a new node (out of node space).
403 Requested node already exists.
500 Invalid STATE.
501 Maximum number of files are already open.
502 Unknown STATE.
504 Error converting C to Fortran string.
505 Error converting Fortran to C string.
600 Invalid parameter name.
601 Invalid unit number.
602 Invalid record length.
603 Invalid machine code.
604 Invalid maximum number of nodes.
605 Invalid maximum number of variables.
606 Invalid maximum number of integer elements for node headers.
607 Invalid maximum number of real elements for node headers.
608 Invalid maximum number of character elements for node headers.
609 Invalid dimensions for record length calculations.

Continued on next page

45



Common File User’s Guide

Table 1: Status Codes (Continued)

Code Meaning

610 Invalid precision for record length calculations.
611 Invalid common file version.
650 File open, cannot change unit number.
651 File open, cannot change record length.
652 File open, cannot change maximum number of nodes.
653 File open, cannot change maximum number of variables.
654 File open, cannot change maximum number of integer elements.
655 File open, cannot change maximum number of real elements.
656 File open, cannot change maximum number of character elements.
700 Invalid mode in CFUNIT (must be ’NEW’ or ’CURRENT’).
701 Unknown desired units type
702 Unknown current units type
801 Invalid operation for the files common file version
900 Fortran OPEN error.
901 Fortran CLOSE error.
902 Fortran READ error.
903 Fortran WRITE error.
904 Conversion to or from this machine is not supported.
905 Error allocating memory.

46



6 Default Library Values and Limits

The current implementation of the common file library has the following set of maximum and
default values. Note that the values are applied at the time of file creation.

Table 2: Default Library Values and Limits

Parameter Maximum Default Description
Vers 1 Vers 2 Vers 3

ABORT N/A N/A N/A 1 Abort-on-error flag
MAX_NODES 128 512 none 64 Maximum number of subnodes per

node
MAX_VARIABLES 128 512 none 64 Maximum number of variables per

node
MAX_INTEGERS 128 none none 64 Maximum number of INTEGER ele-

ments in a node header
MAX_REALS 128 none none 64 Maximum number of REAL elements

in a node header
MAX_CHARACTERS 4 none none 2 Maximum number of CHARAC-

TER*80 elements in a node header
MAX_FILES 7 7 15 max Maximum number of common files

that can be open simultaneously by the
application. This cannot be altered by
the application.

47





7 Definitions for CFD Applications

This section describes the conventions to be used when using a common file for CFD applications.
Consistent application of these conventions will assure that data will be accessible to a developing
base of pre- and post- processing tools. For a picture representation of the following definitions see
Figure 1 and Figure 2 at the end of this section.

7.1 Node Identifiers

7.1.1 Zone Node Identifiers

Zone nodes are subnodes of the root node. A zone node is accessed and the header read through
the following Fortran code fragment:

CHARACTER*32 ZNAME
INTEGER ZONE
INTEGER STATUS, RSTATE, ZSTATE

C Note that the default sizes of IPARZ, FPARZ and CPARZ are used.

INTEGER IPARZ(64)
REAL FPARZ(64)
CHARACTER*80 CPARZ(2)

C RSTATE is the state of the root node returned by CFOPEN
C All zone nodes under the root node are named ’ZONE nnn’

ZONE = zone number (1, 2, 3, etc.)
WRITE (ZNAME, ’(’’ZONE ’’, I3)’) ZONE
CALL CFSNOD (STATUS, RSTATE, ZNAME, ZSTATE)
CALL CFRNOD (STATUS, ZSTATE, IPARZ, FPARZ, CPARZ)

After executing the above code, you may access the data for the zone through the state variable
ZSTATE.

7.1.2 Boundary Node Identifiers

Boundary nodes are subnodes of a zone node. A boundary node is accessed through the following
Fortran construct:

CHARACTER*32 BNAME
INTEGER BNDRY
INTEGER STATUS, BSTATE, ZSTATE

C All boundary nodes for a given zone are stored under the zone
C node with a name of ’BNDRY n’ where n is a number defined below.

BNDRY = boundary (1=I1, 2=IMAX, 3=J1, 4=JMAX, 5=K1, 6=KMAX, 7=Chimera,
≥ 8=Unstructured )

WRITE (BNAME, ’(’’BNDRY ’’, I1)’) BNDRY

49



Common File User’s Guide

CALL CFSNOD (STATUS, ZSTATE, BNAME, BSTATE)

7.1.3 Interior Node Identifiers

Interior nodes are subnodes of a zone node (for 3-D unstructured grids only). An interior node
is accessed through the following Fortran construct:

CHARACTER*32 INAME
INTEGER STATUS, ISTATE, ZSTATE

C An interior node for a given zone is stored under the zone
C node with the name ’INTERIOR’.

INAME = ’INTERIOR’
CALL CFSNOD (STATUS, ZSTATE, INAME, ISTATE)

7.2 Node Header Definitions

Note: All dimensional values stored in the common sections of the node headers must be in SI
units. Data stored in the application-specific sections can be in any units the application desires.

7.2.1 Root Node Common Definitions

For unstructured grids, IPAR(1), IPAR(2), and IPAR(3) are not used. For a file containing both
structured and unstructured zones, these parameters will have the correct values for the structured
zones.

IPAR(1) Maximum I in all zones
IPAR(2) Maximum J in all zones
IPAR(3) Maximum K in all zones
IPAR(4) Number of zones
IPAR(5) Maximum number of points in any one zone
IPAR(6) Symmetry flag:

0 = no symmetry assumed,
1 = x-y axi-symmetric,
2 = y-z axi-symmetric,
3 = x-z axi-symmetric

IPAR(7) Mxset
IPAR(8) Rotation system flag:

0 = none,
1 = rotating system,
2 = gravity system

IPAR(9-39) Reserved for future use
IPAR(40-64) Reserved for application-specific data

FPAR(1) p0, freestream stagnation pressure
FPAR(2) T0, freestream stagnation temperature
FPAR(3) a0, freestream stagnation speed of sound
FPAR(4) ρ0, freestream stagnation density

50



7 Definitions for CFD Applications

FPAR(5) M , freestream Mach number
FPAR(6) p, freestream static pressure
FPAR(7) T , freestream static temperature
FPAR(8) a, freestream speed of sound
FPAR(9) ρ, freestream density
FPAR(10) k, freestream k of k-ε or k-ω turbulence model
FPAR(11) ε or ω, freestream ε or ω of k-ε or k-ω turbulence model
FPAR(12) µ, freestream viscosity
FPAR(13) Re, Reynolds number
FPAR(14) α, angle of attack
FPAR(15) β, yaw angle
FPAR(16-23) Reserved for future use
FPAR(24) β∞, effective γ
FPAR(25) R, gas constant
FPAR(26) γ, ratio of specific heats (1.4)
FPAR(27) Pr, Prandtl number (0.72)
FPAR(28) Prt, turbulent Prandtl number (0.9)
FPAR(29) x, x base point of axi-symmetric line
FPAR(30) y, y base point of axi-symmetric line
FPAR(31) z, z base point of axi-symmetric line
FPAR(32) M , slope of axi-symmetric line
FPAR(33) A, angle of rotation about axi-symmetric line
FPAR(34-36) Rotation system xyz center (IPAR(8) = 1)
FPAR(37-39) Rotation system xyz rotation rate (IPAR(8) = 1), or gravity system xyz terms

(IPAR(8) = 2)
FPAR(40-64) Reserved for application-specific data

CPAR(1) Grid title
CPAR(2) Flowfield title

7.2.2 WIND Root Node Application Specific Data

IPAR(59) Last time level completed (Global Newton)
IPAR(60) −1 for new format global header
IPAR(61) Last I plane completed (marching)
IPAR(62) Last zone completed
IPAR(63) Number of k-ε cycles
IPAR(64) Number of cycles

FPAR(60) Global Newton big norm
FPAR(61) Global Newton L2 norm
FPAR(62) Global Newton max convergence variable ever

7.2.3 Zone Node Header Common Definitions

Zone nodes can contain either structured or unstructured grids. These two types are distinguished
based on IPAR(9) in the Zone Node Header. IPAR(9) will be 0 for structured grids and 1 for
unstructured grids.

51



Common File User’s Guide

Structured Grid

IPAR(1) I dimension
IPAR(2) J dimension
IPAR(3) K dimension
IPAR(4) Number of fringe points
IPAR(5) Number of overlapping tracking definitions
IPAR(6) Size of overlapping definition work array
IPAR(7-8) Reserved for future use
IPAR(9) Grid type: 0 = Structured, 1 = Unstructured, 2 = Hybrid
IPAR(10) Gas model:

0 = Ideal gas
1 = Thermally perfect (frozen chemistry)
2 = Equilibrium air
3 = Finite rate

IPAR(11) Turbulence model:
0 = Euler (Inviscid)
1 = Laminar
2 = Baldwin-Lomax
3 = Cebeci-Smith
4 = k-ε (obsolete)
5 = Baldwin-Lomax and PDT
6 = Baldwin-Barth (1 equation)
7 = Spalart-Allmaras (1 equation)
8 = SST-Menter (2 equation, k-ω)
10 = Chien k-ε

IPAR(12) Cell/node/variable relationships
0 = Variable values are at node points
1 = Variable values are at cell centers

IPAR(13) Wall function mode
0 = No wall function
1 = White/Christoph model

IPAR(20) Boundary type for I = 1 boundary
0 = Undefined
1 = Reflection/symmetry
2 = Adiabatic wall
3 = Freestream
4 = Viscous wall
5 = Unused
6 = Unused
7 = Arbitrary inflow
8 = Outflow
9 = Inviscid wall
10 = Self-closing
11 = Singular axis
12 = Inviscid axis and wall (not used in WIND)
13 = Coupled/point by point
14 = Unused
15 = Bleed
16 = Pinwheel axis
17 = Frozen

52



7 Definitions for CFD Applications

18 = Chimera
IPAR(21) Boundary type for I = IMAX boundary
IPAR(22) Boundary type for J = 1 boundary
IPAR(23) Boundary type for J = JMAX boundary
IPAR(24) Boundary type for K = 1 boundary
IPAR(25) Boundary type for K = KMAX boundary
IPAR(26) Grid velocity flag; 0 = none, 1 = global, 13 = point by point
IPAR(27-39) Reserved for future use
IPAR(40-64) Reserved for application-specific data

FPAR(1-7) Zone min/max (xmin , xmax , ymin , ymax , zmin , zmax , checksum)
FPAR(8-10) Global translation velocity (u, v, w)
FPAR(11-13) Global rotation velocity (R, Θ, Ψ)
FPAR(14-16) Global rotation center (x, y, z)
FPAR(17-39) Reserved for future use
FPAR(40-64) Reserved for application-specific data

CPAR(1) Zone title
CPAR(2) Characters 1:40, grid generator identification

Characters 41:80, flow solver identification

Unstructured Grid

IPAR(1) Number of points
IPAR(2) Number of edges
IPAR(3) Number of faces
IPAR(4) Number of cells (0 ⇒ surface)
IPAR(5) Max number of nodes per face
IPAR(6) Max number of faces per cell
IPAR(7) Number of surface offset data entries
IPAR(8) Max nodes/cell
IPAR(9) Grid type: 0 = Structured, 1 = Unstructured, 2 = Hybrid
IPAR(10) Gas model:

0 = Ideal gas
1 = Thermally perfect (frozen chemistry)
2 = Equilibrium air
3 = Finite rate

IPAR(11) Turbulence model:
0 = Euler (Inviscid)
1 = Laminar
2 = Baldwin-Lomax
3 = Cebeci-Smith
4 = k-ε
5 = Baldwin-Lomax and PDT

IPAR(12) Cell/node/variable relationships:
0 = Variable values are at node points
1 = Variable values are at cell centers

IPAR(13-19) Reserved for flow code use
IPAR(20) Number of boundary points
IPAR(21) Number of boundary edges

53



Common File User’s Guide

IPAR(22) Number of boundary faces
IPAR(23) Boundary condition type (also used to distinguish between 2-D and 3-D grids):

0 = Face
1 = Node (3D)
2 = Edge (2D)
3 = Node (2D)

IPAR(24) Number of closed boundaries (Curves-2D, Surfaces-3D) up to a maximum of 20
IPAR(25-58) Array of boundary size pairs:

(25,27, . . . ) - No. of points (2D or 3D surface)
(26,28, . . . ) - No. of points/No. of faces (Full 3D boundary)

IPAR(60) Number of overlapping tracking definitions
IPAR(61) Size of overlapping definition work array

FPAR(1-39) Reserved for future use
FPAR(40-64) Reserved for application-specific data

CPAR(1) Zone title
CPAR(2) Characters 1:40, grid generator identification

Characters 41:80, flow solver identification

7.2.4 WIND Zonal Node Application Specific Data

IPAR(55) Compressor face mode
IPAR(56) I location of downstream pressure
IPAR(57) J location of downstream pressure
IPAR(58) K location of downstream pressure
IPAR(59) Downstream pressure variable flag (I, J, or K)

FPAR(55) Compressor face T0
FPAR(56) Compressor face mass flow
FPAR(57) Compressor face Mach
FPAR(58) Downstream pressure for IJK mode
FPAR(59) Downstream Mach for IJK mode
FPAR(60)
FPAR(61) Downstream pressure
FPAR(62) Mass flow ratio
FPAR(63) Unstructured grid type:

0 = Mixed cells
1 = Tets only
2 = Pyramid only
11 = Prism only
111 = Hex only

FPAR(64) Capture area used with specified mass flow ratio and bleed rate boundary con-
ditions

7.2.5 Boundary Node Application Specific Data

IPAR(58) Boundary rotation mode
IPAR(59-64) Rotation specific data depending on mode

54



7 Definitions for CFD Applications

7.3 Variable Identifiers

7.3.1 Geometry

x x, x coordinate
y y, y coordinate
z z, z coordinate
IBLANK Blanking data asscociated with overlapping grids
ui x direction grid velocity
vi y direction grid velocity
wi z direction grid velocity

The variables x, y, and z are located under the zone node for structured grids. For unstructured
grids, x, y, and z for the boundary points are located under the zone node and x, y, and z for the
interior points (3D) are located under the interior node. Note that IBLANK has labels encoded in it
as follows: 1 = a normal point, −(label + 1) = a hole point, and +(label + 1) = a fringe point, where
label is a positive number.

The following variables are applicable to unstructured grids only, and are located under the zone
node for boundary surfaces and under the interior node for volumes.

FACPi Index for point i of a face, i = 1 to the number of points per face
EDGP1 Index for point 1 of an edge segment
EDGP2 Index for point 2 of an edge segment
FACEi Index for edge i of a face, i = 1 to the number of edges per face

The EDGP1, EDGP2, and FACEi variable definitions are provided for future extensions and will not be
initially supported by common applications (such as post-processing).

The following variables are applicable to unstructured grids only, and are located under the the
interior node.

celpi Index for point i of a cell, i = 1 to the number of points per cell
celfi Index for face i of a cell, i = 1 to the number of faces per cell
celtyp The type of cell (see definition of FPAR(63) in Section 7.2.4). Used for hybrid

unstructured grids only.

The celfi variable definitions are provided for future extensions and will not be initially supported
by common applications (such as post-processing)

The following variables are applicable to unstructured grids only, and are located under the zone
node.

srfoff Starting index in the face list of a surface segment
srfsiz Number of faces on a surface segment
srfid ID number for a surface segment
srfbc Boundary condition for a surface segment, BC codes same as structured grid
srfvrt For hybrid grids, the number of points per face for all faces of that boundary surface

7.3.2 General Flow Variables

rho ρ, density

55



Common File User’s Guide

rho*u ρu, x component of momentum per unit volume
rho*v ρv, y component of momentum per unit volume
rho*w ρw, z component of momentum per unit volume
rho*e0 ρe0, stagnation energy per unit volume
P p, pressure
T T , temperature
u u, x component of velocity
v v, y component of velocity
w w, z component of velocity
e0 e0, stagnation energy per unit mass
M M , Mach number
s s, entropy
h h, enthalpy
omegax ωx, x component of vorticity
omegay ωy, y component of vorticity
omegaz ωz, z component of vorticity

For rotating systems (IPAR(8) = 1), an “r” is appended to the name of the following variables to
indicate the variable is in a rotating reference system: rho*u, rho*v, rho*w, rho*e0, u, v, w, e0, M.

7.3.3 Turbulence Variables

mul µl, laminar viscosity
mut µt, turbulent viscosity
k k, kinetic energy (k-ε model)
rho*k ρk (k-ε model)
epsilon ε, rate of dissipation (k-ε model)
rho*epsi ρε (k-ε model)
K k (k-ε and SST models)
omega Ω (SST model)
anut ηt (Baldwin-Barth and Spalart-Allmaras models)

7.3.4 Chemistry Variables

a a, local speed of sound
beta β, effective gamma
Z Z, compressibility
kappa κ, thermal conductivity
etake νK.E., kinetic energy efficiency
PHI Mass fraction of non-reacting species
H Mass fraction of H
N Mass fraction of N
O Mass fraction of O
H2 Mass fraction of H2

N2 Mass fraction of N2

O2 Mass fraction of O2

OH Mass fraction of OH
NO Mass fraction of NO
H2O Mass fraction of H2O

56



7 Definitions for CFD Applications

CO2 Mass fraction of CO2

rho*H ρH, ρ times the mass fraction of H; similarly for N, O, etc.

7.3.5 Miscellaneous Variables

Cp Cp, pressure coefficient
delta* δ∗, displacement thickness of boundary layer
THETA θ, momentum thickness of boundary layer
Redelta* Reδ∗ , Reynolds number based on δ∗

Cf1 Cf1, skin friction in I direction
Cf2 Cf2, skin friction in J direction
Cf3 Cf3, skin friction in K direction

7.3.6 WIND Application Specific Variables

The following variables are used by WIND.

Variable Description Location Type

maxr Max residual for all zones for each equation Root Real
BLAREA Bleed area Root Real
SETDATA(3,*) For each set; (1,*) = # iterations, (2,*) = max residual,

and 3 = integrated time (located under zone node)
Zone Real

LABLST Label for overlapping tracking Zone Integer
LABTYP Hole/fringe type for overlapping tracking Zone Integer
LABIND Index into LABDEF for overlapping tracking Zone Integer
LABDEF Generation data for overlapping tracking Zone Real
NZN If > 0, zone coupled to; if ≤ 0, boundary condition Boundary Integer
NBD Boundary coupled to Boundary Integer
I1 Node coupled to (first coordinate) Boundary Integer
I2 Node coupled to (second coordinate) Boundary Integer
I3 Node coupled to (third coordinate) Boundary Integer
F1 First coordinate tri/bilinear interpolating factor Boundary Real
F2 Second coordinate tri/bilinear interpolating factor Boundary Real
F3 Third coordinate trilinear interpolating factor Boundary Real
Trans Turbulent transition specification array Boundary Real
Temp Temperature specification array Boundary Real

The variables Trans and Temp are stored in boundary nodes in the .cfl file since they are solution-
specific data.

57



Common File User’s Guide

Node: ‘‘ROOT’’

Node: ‘‘ZONE N’’ (N = 1,NZONE)

Node: ‘‘ZONE N’’ (N = 1,NZONE)

Node: ‘‘INTERIOR’’

ipar(1) = imax
    (2) = jmax
    (3) = kmax
    (4) = nzone
    (5) = mxpts
    (6) = symtry
    (7) = mxset

fpar(1)  = p0
    (2)  = T0
    (3)  = a0
    (4)  = rho0
    (5)  = M
    (6)  = p
    (7)  = T
    (8)  = a
    (9)  = rho
    (10) = K
    (11) = epsi
    (12) = mu
    (13) = Re
    (14) = alpha
    (15) = beta
    (25) = R
    (26) = Gamma
    (27) = Pr
    (28) = Prt

cpar(1) = Main
          title
    (2) = Sub-
          title

ipar(1) = idim    ipar(10)   = Gas model    cpar(1) = Zone title
    (2) = jdim        (11)   = Turb model       (2) = Solver name
    (3) = kdim        (12)   = cell/node
    (4) = nfrgpt  fpar(1-39) = Reserved
    (9) = 0           (39-n) = Application

ipar(1) = npnts     ipar( 9) = 1           fpar(1-39) = Reserved
    (2) = nedge         (10) = Gas model       (39-n) = Application
    (3) = nface         (11) = Turb model  cpar(1)    = Zone title
    (4) = ncell         (12) = cell/node       (2)    = Solver name
    (5) = npts/face     (20) = nbdpts
    (6) = nface/cell

ipar = fpar = cpar = n/a

Structured zone node

Unstructured zone node

if ncell > 0

maxr
(mxset)

setdata
(3*mxset)

rho rho*u rho*v rho*w rho*e0 etc
(idim,jdim,kdim)

setdata
(3*mxset)

rho rho*u rho*v rho*w rho*e0 etc
(nbdpts)

rho rho*u rho*v rho*w rho*e0 etc
(npnts-nbdpts)

Figure 1: Common File Layout for .cfl Files

58



7 Definitions for CFD Applications

Node: ‘‘ROOT’’

Node: ‘‘ZONE N’’ (N = 1,NZONE)

Node: ‘‘BNDRY n’’ Node: ‘‘FRNG BND’’

Node: ‘‘ZONE N’’ (N = 1,NZONE)

Node: ‘‘BNDRY n’’ Node: ‘‘INTERIOR’’

ipar(1) = imax
    (2) = jmax
    (3) = kmax
    (4) = nzone
    (5) = mxpts

fpar(i)- see .cfl file

cpar(1) = Main
          title
    (2) = Sub-
          title

ipar(1) = idim     ipar(20-25) = Boundary     cpar(1) = Zone title
    (2) = jdim                   type code        (2) = Grid gen
    (3) = kdim     fpar(1-39)  = Reserved               name
    (4) = nfrgpt       (39-n)  = Application
    (9) = 0

ipar = fpar = cpar = n/a ipar = fpar = cpar = n/a

ipar(1) = npnts       ipar( 7) = nsurfs   fpar(1-39) = Reserved
    (2) = nedge           ( 9) = 1 or 2       (39-n) = Application
    (3) = nface           (20) = nbdpts   cpar(1)    = Zone title
    (4) = ncell           (21) = nbdedge      (2)    = Grid gen
    (5) = npts/face       (22) = nbdface               name
    (6) = nface/cell      (23) = bctype

ipar = fpar = cpar = n/a ipar = fpar = cpar = n/a

Structured zone node

Unstructured zone node

if ipar(20-25) = 13 if nfrgpt > 0

if srfbc(n) = 13 for n=1,nsurfs if ncell > 0

BLAREA
(128)

x y z IBLANK ui vi wi
(idim,jdim,kdim)

NZN NBD I1 I2 F1 F2
(n=1,2  (jmax,kmax))
(n=3,4  (kmax,imax))
(n=5,6  (jmax,imax))

NZN ZHOLE I1-I3 F1-F3 I|J|KFRG
(nfrgpt)

x y z
(nbdpts)

facpi,
i=1,npts/face
(nbdface)

srfvrt srfid srfbc srfsiz srfoff srfpts
(nsurfs)

NZN NBD Ii Fi
i=1,npts/face

(srfsiz(n))

x y z
(npnts-nbdpts)

celpi,
i=1,nface/cell

(ncell)

celtyp

Figure 2: Common File Layout for .cgd Files

59





Appendix A. Conversion Factors

This section includes factors for converting to and from SI units. These factors are returned from
the subroutine CFUNIT. Only the main factors are included here for reference (CFUNIT will return
conversion factors from any supported units to any other supported units of the same type e.g. _C
to _R) and to illustrate how basic unit symbols are combined. The following sections begin with the
unit type and a list of valid variable names for that type (if any), followed by a list of conversions
from the units on the left to the units on the right. These units are used in the CUNITS and DUNITS
variable when the mode is ’NEW’ and are returned in DUNITS when the mode is ’CURRENT’.

Mass

kg × 0.0685217658567918 = slug
slug × 14.5939029372064 = kg
kg × 2.20462262184878 = lbm

lbm × 0.453592370000000 = kg
slug × 32.1740485564304 = lbm

lbm × 0.0310809501715673 = slug
kg × 1000. = g
g × 0.001 = kg

Length, x, y, z

m × 3.28083989501312 = ft
ft × 0.304800000000000 = m
m × 39.3700787401575 = in
in × 0.0254 = m
m × 100.0 = cm
cm × 0.01 = m
m × 1000.0 = mm
mm × 0.001 = m

Velocity, u, v, w

m/s × 3.28083989501312 = ft/s
ft/s × 0.3048 = m/s
m/s × 39.3700787401575 = in/s
in/s × 0.0254 = m/s
m/s × 100.0 = cm/s
cm/s × 0.01 = m/s
m/s × 1000.0 = mm/s
mm/s × 0.001 = m/s

Force

N × 0.224808943099710 = lbf

lbf × 4.44822161526050 = N
N × 1× 105 = dyn
dyn × 1× 10−5 = N

61



Common File User’s Guide

Pressure, p

N/m2 × 0.0208854342331501 = lbf/ft2

lbf/ft2 × 47.8802589803358 = N/m2

N/m2 × 0.000145037737730209 = lbf/in2

lbf/in2 × 6894.75729316836 = N/m2

Gas constant, R

m2/s2-K × 5.97995038991999 = ft2/s2-R
ft2/s2-R × 0.167225467570038 = m2/s2-K

Viscosity, mul, mut

kg/m-s × 0.0208854342331501 = slug/ft-s
slug/ft-s × 47.8802589803358 = kg/m-s

k (of k-ε)

m2/s2 × 10.7639104167097 = ft2/s2

ft2/s2 × 0.09290304 = m2/s2

epsilon (of k-ε)

kg-m2/s3 × 10.7639104167097 = slug-ft2/s3

slug-ft2/s3 × 0.09290304 = kg-m2/s3

rho*k (of ρk-ε)

kg-m2/s2 × 0.0208854342331501 = slug-ft2/s2

slug-ft2/s2 × 47.8802589803358 = kg-m2/s2

rho*epsi (of ρk-ε)

m2/s3 × 0.0208854342331501 = ft2/s3

ft2/s3 × 47.8802589803358 = m2/s3

Thermal conductivity, kappa

N/s-K × 0.124893860586174 = lbf/s-R
lbf/s-R × 8.00679869536116 = N/s-K

Density, rho

kg/m3 × 0.00194032033197972 = slug/ft3

slug/ft3 × 515.378818393196 = kg/m3

rho*u, rho*v, rho*w

kg/m2-s × 0.00636588035426416 = slug/ft2-s
slug/ft2-s × 157.087463846246 = kg/m2-s

rho*e0

kg/m-s2 × 0.0208854342331501 = slug/ft-s2

slug/ft-s2 × 47.8802589803358 = kg/m-s2

62



A Conversion Factors

Energy, e, h

J (= N-m) × 0.737562149277265 = lbf-ft
lbf-ft × 1.3558179483314 = J (= N-m)
J × 1× 107 = erg
erg × 1× 10−7 = J

Entropy, s

J/K (= N-m/K) × 0.409756760453328 = lbf-ft/R
lbf-ft/R × 2.44047224234608 = J/K (= N-m/K)

Temperature, T

K × 9/5 = R
R × 5/9 = K

Note: Conversion factors and reference conditions are stored in single precision format. When using
the conversion factors in computations, use double precision calculations and assign to a single
precision variable. This will ensure that accurate conversion factors and reference conditions will be
maintained. Failure to do this may cause slight differences in the residual history.

63





Appendix B. Transferring Common Files Between Computer
Systems

Common files created on CONVEX, IBM RS/6000, IRIS, VAX, VAX ALPHA, HP, and PAR-
AGON systems can be freely interchanged among each other as the common file library routines
automatically recognize the type of machine on which the file was created and, if necessary, perform
the appropriate conversions without user intervention. For version 3 files the VAX mainframes are
not supported. Obviously, this conversion has some cost. If a file is moved to a machine that is of a
different type than the creating machine and is going to be repeatedly processed on that machine,
it may be beneficial to “import” the common file using cfcnvt .

If a common file is going to be moved between a Cray and any of the other supported systems,
then the file must be converted with the CFCRAY utility described in Appendix C. This conversion
is necessary due to the differing word size of the Cray machine. Version 3 files may be interchanged
freely between all supported platforms including the Cray.

In all cases, remember that common files are binary files. When using file transfer programs like
ftp, remember to use the binary or image mode when transferring common files.

65





Appendix C. CFCRAY — Convert Version 1 or 2 Files to
and from Cray Format

CFCRAY is a common file utility that converts a common file in CONVEX, VAX ALPHA, VAX,
IRIS, HP, PARAGON or IBM RS/6000 format into Cray format and vice-versa. This utility runs
only on the Cray. This program is not used for version 3 files.

C.1 Converting Version 1 or 2 Files to Cray Format

To convert a file to Cray format, it must first be transferred to the Cray machine using ftp (binary
mode), rcp or some other binary transfer mechanism. Then invoke CFCRAY by entering cfcray and
fill in the prompts as follows:

% cfcray
Enter input file name (<CR> to quit): vax_grid.cgd

Enter output file name : cray_grid.cgd

1=Cray
2=VAX
4=Convex
5=IEEE (IRIS, IBM RS/6000)
Select output file format : 1

The file will then be converted and may be used by the application programs.

C.2 Converting Version 1 or 2 files from Cray Format

To convert a common file in Cray format to some other format, follow the following example:

% cfcray
Enter input file name (<CR> to quit): cray_grid.cgd

Enter output file name : vax_grid.cgd

1=Cray
2=VAX
4=Convex
5=IEEE (IRIS, IBM RS/6000)
Select output file format : 2 (or 4 or 5)

The converted file may then be transferred to the target machine using ftp (binary mode), rcp or
some other binary transfer mechanism.

C.3 Embedding CFCRAY in Application Scripts

It may be necessary to invoke CFCRAY in a batch mode (for example, on the MDC Cray). This
is done by creating a data file for the CFCRAY program and then invoking it directly. This is what
the interactive cfcray script under UNICOS performs.

The file format is as follows:

67



Common File User’s Guide

Line 1: inunit
Line 2: infile
Line 3: outunit
Line 4: outfile
Line 5: output file format

Lines 6 through the end are optional

Line 6: cmdunit
Line 7: command script . . .
Line n: command script . . .

68



Appendix D. Using Common Files Directly in PLOT3D

The MDA CFD project version of PLOT3D has been modified to directly accept common files
as input. If a flow solver uses a common file as its grid source and produces a common file as its
restart file, these files most likely can be read directly into PLOT3D. This saves time and disk space
by eliminating the need to produce separate files for PLOT3D. Two additional features are available
in PLOT3D when reading a common file. The /ZONES= “n1-m1, . . . , nl-ml” qualifier to the READ
command will read only the zones n through m, where n < m. The /APPEND qualifier to the READ
command will append the zones in the specified common file to the end of the zones already read in
to PLOT3D. Note: In the calculation of IBLANK data for particle tracing appended grids can not be
interconneted. Thus all zones to be interconnected must be in the same READ command.

D.1 Reading a Grid File Only

To read only a grid file, the following READ command must be entered:

READ/CGD=grid_file_name

grid_file_name is the name of the common file (without the .cgd suffix) which contains the grid.

D.2 Reading Separate Grid and Flow Files

To read both a grid file and a flow file (like reading an XYZ and a Q file), issue the following
READ command:

READ/CGD=grid_file_name /CFL=flow_file_name

grid_file_name is the name of the common file (without the .cgd suffix) which contains the grid.
flow_file_name is the name of the common file (without the .cfl suffix) which contains the flowfield.

D.3 Reading a Combined Grid and Flow File

Some programs may produce a file in which the grid and flow field have been written to one file.
To read such a file, issue the following READ command:

READ/CGF=combined_file_name

combined_file_name is the name of the common file (without the .cgf suffix) which contains the
grid and flowfield information.

D.4 Reading Using the /APPEND and /ZONES Qualifiers

This example reads zones 4–9 and 12 from one file, and appends zone 3 from another file.

READ/ZONES=’4-9,12-12’/CGD=GRID1/CFL=SOL1
READ/ZONES=3-3/APPEND/CGD=GRID2/CFL=SOL2

D.5 Dimensionalization Issues

69



Common File User’s Guide

A standand PLOT3D Q file contains data that has been non-dimensionalized. When a user
requestes a plot of “dimensional” quantities (100 (density), 110 (pressure), etc.), what is really
displayed is a dimensional form using predefined conditions not related to the actual conditions. For
example, the normalized pressure at infinity would be displayed as 1/γ.

When a common file flow file is processed, data will be displayed in SI units for dimensional plots
(100 (density), 110 (pressure), etc.).

The normalized counterparts of the dimensional plots (101 (density), 111 (pressure), etc.) will
display the data normalized by the infinity conditions. Therefore, the normalized pressure at infinity
will now be displayed as 1, rather than 1/γ as in the case of using a Q file.

By using the common file, one can now see both the dimensional (albeit, SI values) or non-
dimensional values of dimensional quantities.

D.6 Tricks

Occasionally one may want to read only the grid out of a combined grid and flow file or may
want to use only the flow field out of a combined grid and flow file and use a grid from another
file. To accomplish this feat, note that PLOT3D simply assumes that the file extension defines the
type of data to look for. So a file with a .cgd suffix is assumed to contain the variables x, y, and z.
Thus to cause one type of file to be treated as another type of file, simply rename it before invoking
PLOT3D! This works because the basic structure of all common files is the same. It is the variables
within the file that determine what it is used for. PLOT3D will only read geometry when CGD= is
used and will ignore any other data. In a similar manner, when CFL= is used it wants flow field data
so it ignores any geometry data that may be present.

70


	General Overview
	Common File Versions
	Version 1
	Version 2
	Version 3

	Basic Concepts
	Nodes
	Node Header Information
	Variables
	Reference and Scaling Data

	Subroutine Descriptions
	Initialization Functions
	File Oriented Functions
	Node Oriented Functions
	Data Read and Write Functions
	Miscellaneous Functions

	Status Codes
	Default Library Values and Limits
	Definitions for CFD Applications
	Node Identifiers
	Zone Node Identifiers
	Boundary Node Identifiers
	Interior Node Identifiers

	Node Header Definitions
	Root Node Common Definitions
	WIND Root Node Application Specific Data
	Zone Node Header Common Definitions
	WIND Zonal Node Application Specific Data
	Boundary Node Application Specific Data

	Variable Identifiers
	Geometry
	General Flow Variables
	Turbulence Variables
	Chemistry Variables
	Miscellaneous Variables
	WIND Application Specific Variables



